

EG915N SeriesHardware Design

LTE Standard Module Series

Version: 1.2

Date: 2023-09-25

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Tterminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2021-11-19	Shihao HUANG/ Jeff SHEN	Creation of the document
1.0	2022-02-25	Shihao HUANG/ Jeff SHEN	First official release
1.1	2022-10-14	Shihao HUANG/ Evan ZOU/ Yule Deng	 Added a new variant EG915N-LA and related information. Updated the weight of the module (Table 2). Added dual SIM single Standby function (Table 3 and Chapter 3.9). Updated the USB serial drivers (Table 3). Added the emergency call function (Table 3). Added the normal voltage in DC characteristics of PWRKEY and RESET_N (Table 7). Updated the reference design of power supply (Figure 8). Updated the power-down timing (Figure 13). Updated the reference design of microphone interface (Figure 22). Deleted the information on long frame mode and the PCM interface used as slave device in short frame mode (Chapter 3.13). Updated reference design of PCM and I2C applications (Figure 26). Updated GNSS frequency range (Table 32). Updated the digital I/O characteristics (Chapter 6.3). Updated the ramp-up slope, cool-down slope and the note (Chapter 8.2).

			Added a new variant: EG915N-EA, and related information.
			2. Deleted SBAS of GNSS function (Tables 3 & 40).
		Shihao HUANG/ Jeff SHEN/ Yule DENG	3. Updated the USB serial drivers for Android and Linux
			(Table 4).
			4. Updated pins 76 and 77 from RESERVED to
			GRFC_1 and GRFC_2 respectively (Figure 2 &
1.2			Table 6 & Chapter 4.1.2).
	2023-09-25		5. Added two 0 Ω resistors (Figure 9).
	2023-03-23		6. Added a 1 $k\Omega$ resistor (Figure 16).
		Tale DENG	7. Deleted RC circuit (Figure 26).
			8. Updated the direction of ESD protection components
			(Figure 27).
			9. Updated GNSS performance (Table 41).
			10. Updated VSWR of GNSS (Table 42).
			11. Updated power consumption (Chapter 5.3).
			12. Added the module's mounting direction (Chapter
			7.3.3).

Contents

	safety information	
	About the Document	
Co	Contents	6
Та	Table Index	9
Fig	Figure Index	11
1	Introduction	13
	1.1. Special Mark	
2	Product Overview	14
	2.1. Frequency Bands and Functions	15
	2.2. Key Features	15
	2.3. Functional Diagram	17
	2.4. EVB Kit	18
3	Application Interfaces	19
	3.1. General Description	19
	3.2. Pin Assignment	20
	3.3. Pin Description	21
	3.4. Operating Modes	27
	3.5. Sleep Mode	28
	3.5.1. UART Application Scenario	28
	3.5.2. USB Application Scenario	29
	3.5.2.1. USB Application with USB Remote Wakeup Function	29
	3.5.2.2. USB Application with USB Suspend/Resume and RI Functio	n30
	3.5.2.3. USB Application without USB Suspend Function	31
	3.6. Airplane Mode	31
	3.7. Power Supply	32
	3.7.1. Power Supply Pins	32
	3.7.2. Voltage Stability Requirements	33
	3.7.3. Reference Design for Power Supply	34
	3.8. Turn On	34
	3.8.1. Turn On with PWRKEY	34
	3.9. Turn Off	36
	3.9.1. Turn off with PWRKEY	37
	3.9.1.1. Turn off with AT Command	37
	3.10. Reset	37
	3.11. USB Interface	39
	3.12. USB_BOOT	40
	3.13. (U)SIM Interfaces	42
	3.14. UART	44
	3.15. PCM and I2C Interfaces	47
	3.16. Analog Audio Interfaces	49

	3.16.1.	Audio Interfaces Design Considerations	50
	3.16.2.	Microphone Interface Design	50
	3.16.3.	Earpiece and Loudspeaker Interface Design	51
	3.17. ADC	C Interfaces	52
	3.18. India	cation Signal	53
	3.18.1.	Network Status Indication	53
	3.18.2.	STATUS	54
	3.18.3.	MAIN_RI	55
4	RF Specific	cations	56
	4.1. Cell	ular Network	56
	4.1.1.	Main Antenna Interface & Frequency Bands	56
	4.1.2.	Antenna Tuner Control Interfaces*	58
	4.1.3.	Transmitting Power	59
	4.1.4.	Receiver Sensitivity	60
	4.1.5.	Reference Design	62
	4.1.6.	RF Routing Guidelines	63
	4.2. GNS	SS (Optional)	65
	4.2.1.	GNSS Antenna Interface & Frequency Bands	
	4.2.2.	GNSS Performance	66
	4.2.3.	GNSS Antenna Reference Design	66
	4.2	2.3.1. Reference Design for GNSS Active Antenna	
	4.2	2.3.2. Reference Design for GNSS Passive Antenna	
	4.2.4.		
		enna Design Requirements	
	4.4. RF (Connector Recommendation	69
5		Characteristics & Reliability	
	5.1. Abs	olute Maximum Ratings	71
	5.2. Pow	ver Supply Ratings	71
		ver Consumption	
	Ū	tal I/O Characteristics	
	5.5. ESD	Protection	80
	5.6. Ope	erating and Storage Temperatures	81
6	Mechanica	I Information	82
	6.1. Med	chanical Dimensions	82
	6.2. Rec	commended Footprint	84
	6.3. Top	and Bottom Views	85
7	Storage, Ma	anufacturing and Packaging	86
	_	rage Conditions	
	7.2. Man	nufacturing and Soldering	87
		kaging Specification	
	7.3.1.	Carrier Tape	89
	7.3.2.	Plastic Reel	90

8	Appendix R	deferences	92
	7.5.4.	i ackaying i 100-55	91
	731	Packaging Process	01
	7.3.3.	Mounting Direction	90

Table Index

Table 1: Special Mark	13
Table 2: Brief Introduction	14
Table 3: Frequency Bands and Functions	15
Table 4: Key Features	15
Table 5: Parameter Definition	21
Table 6: Pin Description	21
Table 7: Overview of Operating Modes	27
Table 8: Power Supply and GND Pins	32
Table 9: Pin Description of PWRKEY	34
Table 10: Pin Description of RESET_N	38
Table 11: Pin Description of USB Interface	39
Table 12: Pin Definition of USB_BOOT Interface	41
Table 13: Pin Definition of (U)SIM Interfaces	42
Table 14: UART Interface Information	44
Table 15: Pin Definition of Main UART	45
Table 16: Pin Definition of Auxiliary UART	45
Table 17: Pin Definition of Debug UART	46
Table 18: Pin Definition of PCM and I2C Interfaces	47
Table 19: Pin Definition of Audio Interfaces	49
Table 20: Pin Definition of EG915N-EU ADC Interfaces	52
Table 21: Characteristics of ADC Interfaces of EG915N-EU	53
Table 22: Pin Definition of Indication Signal	53
Table 23: Working State of Network Activity Indicator	54
Table 24: Default Behaviors of the MAIN_RI	55
Table 25: Pin Definition of Main Antenna	56
Table 26: EG915N-EU Operating Frequency	56
Table 27: EG915N-LA Operating Frequency	57
Table 28: EG915N-EA Operating Frequency	57
Table 29: Pin Definition of GRFC Interfaces	58
Table 30: EG915N-EU Truth Table of GRFC Interface (Unit: MHz)	58
Table 31: EG915N-LA Truth Table of GRFC Interface (Unit: MHz)	58
Table 32: EG915N-EA Truth Table of GRFC Interface (Unit: MHz)	59
Table 33: EG915N-EU RF Transmitting Power	59
Table 34: EG915N-LA RF Transmitting Power	59
Table 35: EG915N-EA RF Transmitting Power	60
Table 36: EG915N-EU Conducted RF Receiver Sensitivity	60
Table 37: EG915N-LA Conducted RF Receiver Sensitivity	
Table 38: EG915N-EA Conducted RF Receiver Sensitivity	
Table 39: GNSS Antenna Pin Definition	
Table 40: GNSS Frequency	
Table 41: EG915N Series GNSS Performance	66

Table 42: Antenna Requirements	68
Table 43: Absolute Maximum Ratings	
Table 44: Power Supply Ratings	71
Table 45: EG915N-EU Power Consumption	
Table 46: EG915N-LA Power Consumption	74
Table 47: EG915N-EA Power Consumption	77
Table 48: 1.8 V Digital I/O Requirements	79
Table 49: (U)SIM 1.8 V I/O Requirements	80
Table 50: (U)SIM 3.0 V I/O Requirements	80
Table 51: Electrostatics Discharge Characteristics (Temperature: 25-30 °C, Humidity: 40 ±5 %)	81
Table 52: Operating and Storage Temperatures	81
Table 53: Recommended Thermal Profile Parameters	88
Table 54: Carrier Tape Dimension Table (Unit: mm)	89
Table 55: Plastic Reel Dimension Table (Unit: mm)	90
Table 56: Related Documents	92
Table 57: Terms and Abbreviations	92

Figure Index

Figure 1: Functional Diagram of EG915N Series	18
Figure 2: Pin Assignment (Top View)	20
Figure 3: DRX Run Time and Current Consumption in Sleep Mode	28
Figure 4: Sleep Mode Application via UART	29
Figure 5: Sleep Mode Application with USB Remote Wakeup Function	30
Figure 6: Sleep Mode Application with MAIN_RI	30
Figure 7: Sleep Mode Application without USB Suspend Function	31
Figure 8: Power Supply Limits during Burst Transmission	33
Figure 9: Star Configuration of Power Supply	
Figure 10: Reference Design of Power Supply	
Figure 11: Reference Design of Turning on the Module with Driving Circuit	35
Figure 12: Reference Design of Turning on the Module with a Button	35
Figure 13: Power-up Timing	
Figure 14: Power-down Timing	37
Figure 15: Reference Design of RESET_N with Driving Circuit	38
Figure 16: Reference Design of RESET_N with a Button	38
Figure 17: Reset Timing	
Figure 18: Reference Design of USB Application	40
Figure 19: Reference Design of USB_BOOT Interface	41
Figure 20: Timing Sequence for Entering Emergency Download Mode	41
Figure 21: Reference Design of (U)SIM Interface with an 8-pin (U)SIM Card Connector	43
Figure 22: Reference Design of (U)SIM Interface with a 6-pin (U)SIM Card Connector	43
Figure 23: Reference Design with a Voltage-level Translator	46
Figure 24: Reference Design with Transistor Circuit	47
Figure 25: Timing of Short Frame Mode	48
Figure 26: Reference Design of PCM and I2C Application with Audio Codec	49
Figure 27: Reference Design for Microphone Interface	51
Figure 28: Reference Design for Earpiece Interface	51
Figure 29: Reference Design of External Audio Amplifier Output	52
Figure 30: Reference Design of Network Status Indication	54
Figure 31: Reference Design of STATUS	55
Figure 32: Reference Design for Main Antenna Interface	62
Figure 33: Microstrip Design on a 2-layer PCB	63
Figure 34: Coplanar Waveguide Design on a 2-layer PCB	63
Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	64
Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	64
Figure 37: GNSS Active Antenna Reference Design	67
Figure 38: GNSS Passive Antenna Reference Design	67
Figure 39: Dimensions of the Receptacle (Unit: mm)	69
Figure 40: Specifications of Mated Plugs	70
Figure 41: Space Factor of Mated Connectors (Unit: mm)	70

Figure 42: Top and Side Dimensions	82
Figure 43: Bottom Dimensions (Bottom View)	83
Figure 44: Recommended Footprint (Top View)	84
Figure 45: Top View and Bottom View of the Module	85
Figure 46: Recommended Reflow Soldering Thermal Profile	87
Figure 47: Carrier Tape Dimension Drawing	89
Figure 48: Plastic Reel Dimension Drawing	90
Figure 49: Mounting Direction	90
Figure 50: Packaging Process	91

1 Introduction

This document defines the EG915N series module and describes its air interface and hardware interfaces which are connected with your applications.

This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with application notes and user guides, you can use the module to design and set up wireless applications easily.

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
*	Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, argument, and so on, it indicates that the function, feature, interface, pin, AT command, argument, and so on, is under development and currently not supported; and the asterisk (*) after a model indicates that the sample of the model is currently unavailable.

2 Product Overview

The module is an SMD type module which is engineered to meet most of the requirements for M2M applications such as:

- Automation
- Metering
- Tracking system
- Smart safety
- Router
- Wireless POS
- Mobile computing device
- PDA phone
- Tablet PC

Table 2: Brief Introduction

EG915N Series	
Packaging	LGA
Pins count	126
Dimensions	(23.6 ±0.2) mm × (19.9 ±0.2) mm × (2.4 ±0.2) mm
Weight	Approx. 2.46 g

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions

Mode and Function	EG915N-EU	EG915N-LA	EG915N-EA
LTE-FDD	B1/B3/B7/B8/B20	B2/B3/B4/B5/B7/B8/B28/ B66	B1/B3/B7/B8/B20/B28
GSM	EGSM900/DCS1800	GSM850/EGSM900/ DCS1800/PCS1900	EGSM900/DCS1800
GNSS (optional)	GPS/GLONASS/Galileo/ BDS/QZSS	GPS/GLONASS/Galileo/ BDS/QZSS	GPS/GLONASS/Galileo/ BDS/QZSS

2.2. Key Features

The following table describes the detailed features of the module.

Table 4: Key Features

Features	Details
Power Supply	Supply voltage: 3.4–4.5 V
Fower Supply	 Typical supply voltage: 3.8 V
	 Class 4 (33 dBm ±2 dB) for GSM850
	 Class 4 (33 dBm ±2 dB) for EGSM900
	 Class 1 (30 dBm ±2 dB) for DCS1800
	 Class 1 (30 dBm ±2 dB) for PCS1900
Transmitting Power	 Class E2 (27 dBm ±3 dB) for GSM850 8-PSK
	 Class E2 (27 dBm ±3 dB) for EGSM900 8-PSK
	 Class E2 (26 dBm ±3 dB) for DCS1800 8-PSK
	 Class E2 (26 dBm ±3 dB) for PCS1900 8-PSK
	 Class 3 (23 dBm ±2 dB) for LTE-FDD bands
	 Supports up to 3GPP Rel-9 non-CA Cat 1 FDD
LTE Features	Supports 1.4/3/5/10/15/20 MHz RF bandwidth
	LTE-FDD: Max. 10 Mbps (DL), Max. 5 Mbps (UL)
	GPRS:
	 Supports GPRS multi-slot class 12
GSM Features	 Coding scheme: CS 1–4
	 Max. 85.6 kbps (DL), Max. 85.6 kbps (UL)
	EDGE:

	 Supports EDGE multi-slot class 12
	 Supports GMSK and 8-PSK for different MCS
	 Downlink coding schemes: MCS 1–9
	 Uplink coding schemes: MCS 1–9
	 Max. 236.8 kbps (DL), Max. 236.8 kbps (UL)
Internet Protocol	 Supports TCP/UDP/PPP/FTP/HTTP/NTP/PING/NITZ/CMUX/HTTPS/
Features	SMTP/MMS/FTPS/SMTPS/SSL/FILE/MQTT protocols
Todiuros	 Supports PAP and CHAP for PPP connections
	 Text and PDU modes
SMS	 Point-to-point MO and MT
SIVIS	 SMS cell broadcast
	 SMS storage: (U)SIM card and ME, ME by default
	 Supports one digital audio interface: PCM interface
Audio Features	 Supports one analog audio input and one analog audio output
Audio realures	 HR/FR/EFR/AMR/AMR-WB
	 Supports echo cancellation and noise suppression
	 Compliant with USB 2.0 specification (slave mode only), with data
	transmission rate up to 480 Mbps
USB Interface	 Used for AT command communication, data transmission, software
USB IIIlellace	debugging, firmware upgrade and GNSS NMEA message output
	 Supports USB serial drivers for: Windows 7/8/8.1/10/11, Linux 2.6–6.5
	Android 4.x–13.x, etc.
(U)SIM Interfaces	 Supports (U)SIM card: 1.8/3.0 V
(U)SIIVI IIILEITACES	 Supports Dual SIM Single Standby
	Main UART:
	 Used for AT command communication and data transmission
	 Baud rate: 115200 bps by default
	 Supports RTS and CTS hardware flow control
	Auxiliary UART*:
UART	 Used for communication with peripherals
	Baud rate: 115200 bps
	 Supports RTS and CTS hardware flow control
	Debug UART:
	 Used for the output of partial logs and GNSS NMEA message
	Baud rate:115200 bps
PCM Interface	 Used for audio function with an external codec
1 OW Interface	 Short frame mode: module can only be used as master device
I2C Interface	One I2C interface
IZO IIIIGIIAUE	 Complies with I2C bus specification version
ADC Interference	ADC function is only supported by EG915N-EU module, and the module
ADC Interfaces	provides two ADC interfaces.
AT 0	Compliant with 3GPP TS 27.007, 3GPP TS 27.005 and Quectel enhanced
A1 Commands	AT commands
AT Commands	Compliant with 3GPP TS 27.007, 3GPP TS 27.005 and Quectel enhanced

Network Indication	NET_STATUS to indicate the network connectivity status		
	Main antenna interface (ANT_MAIN)		
Antenna Interfaces	 GNSS antenna interface (ANT_GNSS) ¹ 		
	50 Ω impedance		
Desition Finites	 Supports Wi-Fi scan and shares the main antenna 		
Position Fixing	 Supports GNSS positioning ¹ 		
	Operating temperature range: -35 °C to +75 °C ²		
Operating Temperature	 Extended temperature range: -40 °C to +85 °C ³ 		
	 Storage temperature range: -40 °C to +90 °C 		
Firmware Upgrade	Via USB interface or DFOTA		
RoHS	All hardware components are fully compliant with EU RoHS directive		

2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband
- Memory
- Radio frequency
- Peripheral interfaces

_

¹ GNSS function is optional for the module. Only the module with built-in GNSS function can support GNSS positioning function.

² Within operating temperature range, the module is 3GPP compliant.

³ Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission and emergency call, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

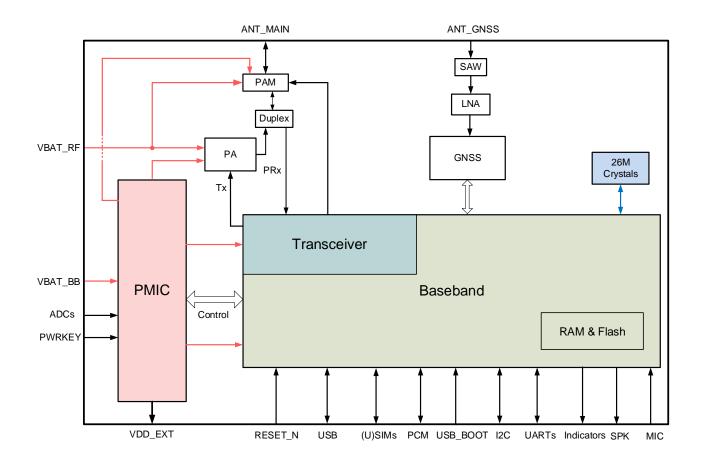


Figure 1: Functional Diagram of EG915N Series

NOTE

ADC (analog-to-digital conversion) function is only supported by EG915N-EU module, and the module provides two ADC interfaces.

2.4. **EVB** Kit

To help you develop applications with the module, Quectel supplies an evaluation board (UMTS<E EVB) with accessories to develop or test the module. For more details, see *document* [1].

3 Application Interfaces

3.1. General Description

The module is equipped with 126 LGA pins that can be connected to cellular application platform. The subsequent chapters will provide detailed descriptions of the following interfaces.

- Power supply
- (U)SIM interfaces
- USB interface
- UART interfaces
- Analog audio interfaces
- PCM and I2C interfaces
- Network status indication
- USB_BOOT interface
- STATUS
- ADC interfaces

3.2. Pin Assignment

The following figure shows the pin assignment of the module.

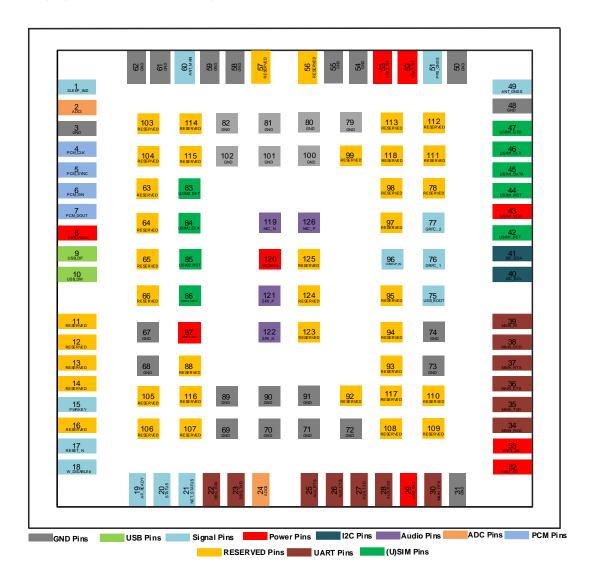


Figure 2: Pin Assignment (Top View)

NOTE

- 1. For EG915N-EU, pins 2 and 24 are ADC pins; for EG915N-LA and EG915N-EA, pins 2 and 24 are RESERVED pins.
- 2. All GND pins should be connected to ground, and keep unused and RESERVED pins open.
- 3. USB_BOOT cannot be pulled up to high level before the module starts up successfully.
- 4. GNSS function is optional. ANT_GNSS and PPS_GNSS are GNSS pins for the module with built-in GNSS function.
- 5. Ensure that there is a complete reference ground plane below the module, and the ground plane is

as close to the module layer as possible. At least a 4-layer board design is recommended.

3.3. Pin Description

The following tables show the pin definition and description of the module.

Table 5: Parameter Definition

Parameter	Description		
Al	Analog Input		
AIO	Analog Input/Output		
AO	Analog Output		
DI	Digital Input		
DO	Digital Input/Output		
DIO	Digital Output		
OD	Open Drain		
PI	Power Input		
РО	Power Output		

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply Input					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	Vmax = 4.5 V Vmin = 3.4 V Vnom = 3.8 V	External power supply must be provided with sufficient current of at least 0.8 A. It is

VBAT_RF	52, 53	PI	Power supply for the module's RF part		recommended to add external TVS diode. A test point is recommended to be reserved. External power supply must be provided with sufficient current of at least 2.2 A. It is recommended to add external TVS diode. A test point is recommended to be reserved.
GND	3, 31, 4	8, 50, 5	4, 55, 58, 59, 61, 62, 67–	74, 79–82, 89–91, 100	-102
Power Supply (Output				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VDD_EXT	29	РО	Provide 1.8 V for external circuit	Vnom = 1.8 V I _O max = 50 mA	Power supply for external GPIO's pull-up circuits. A test point is recommended to be reserved.
Turn On/Off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	15	DI	Turn on/off the module	V _{IL} max = 0.5 V Vnom = VBAT	VBAT power domain. A test point is recommended to be reserved.
RESET_N	17	DI	Reset the module	V_{IL} max = 0.5 V Vnom = 1.8 V	Active low. 1.8 V power domain. A test point is recommended to be reserved if unused.
Status Indication	on				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

SLEEP_IND	1	DO	Indicate the module's sleep mode		
STATUS	20	DO	Indicate the module's operation status	1.8 V	If unused, keep them open.
NET_STATUS	21	DO	Indicate the module's network activity status		
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	8	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	A test point must be reserved.
USB_DP	9	AIO	USB differential data (+)		Requires differential impedance of 90 Ω .
USB_DM	10	AIO	USB differential data (-)		USB 2.0 compliant. Test points must be reserved.
(U)SIM Interfac	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	1.8 V	If unused, keep it open.
USIM1_VDD	43	PO	(U)SIM1 card power supply	I _O max = 50 mA 1.8/3.0 V	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_RST	44	DO	(U)SIM1 card reset		
USIM1_DATA	45	DIO	(U)SIM1 card data	USIM1_VDD 1.8/3.0 V	
USIM1_CLK	46	DO	(U)SIM1 card clock		
USIM1_GND	47	-	Specified ground for (U)SIM1		Connect to main GND of PCB.
USIM2_DET*	83	DI	(U)SIM2 card hot-plug detect	1.8 V	If unused, keep it open.
USIM2_CLK	84	DO	(U)SIM2 card clock	USIM2_VDD	
USIM2_RST	85	DO	(U)SIM2 card reset	1.8/3.0 V	

USIM2_DATA	86	DIO	(U)SIM2 card data		
USIM2_VDD	87	PO	(U)SIM2 card power supply	I _o max = 50 mA 1.8/3.0 V	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
Main UART					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MAIN_DTR	30	DI	Main UART data terminal ready		K L d
MAIN_RXD	34	DI	Main UART receive		If unused, keep them open.
MAIN_TXD	35	DO	Main UART transmit	_	
MAIN_CTS	36	DO	Clear to send signal from the module	1.8 V	Connect to MCU's CTS. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module		Connect to MCU's RTS. If unused, keep it open.
MAIN_DCD	38	DO	Main UART data carrier detect		If unused, keep them
MAIN_RI	39	DO	Main UART ring indication	_	open.
Auxiliary UART	*				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
AUX_RTS	25	DI	Request to send signal to the module		Connect to MCU's RTS. If unused, keep it open.
AUX_CTS	26	DO	Clear to send signal from the module	1.8 V	Connect to MCU's CTS. If unused, keep it open.
AUX_TXD	27	DO	Auxiliary UART transmit	_	If unused, keep them open.

AUX_RXD	28	DI	Auxiliary UART receive		
Debug UART					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	22	DI	Debug UART receive	- 1.8 V	Test points must be
DBG_TXD	23	DO	Debug UART transmit	1.0 V	reserved.
ADC Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC0	24	AI	General-purpose ADC interface	Voltage range:	If unused, keep them open.
ADC1	2	Al	General-purpose ADC interface	0 V to VBAT_BB	ADC function is only supported by EG915N-EU module.
PCM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_CLK	4	DO	PCM clock		
PCM_SYNC	5	DO	PCM data frame sync	- 1.8 V	If unused, keep them
PCM_DIN	6	DI	PCM data input	1.0 V	open.
PCM_DOUT	7	DO	PCM data output		
I2C Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL	40	00			An external 1.8 V
	40	OD	I2C serial clock		
I2C_SDA	41	OD	I2C serial clock I2C serial data	1.8 V	pull-up resistor is required. If unused, keep them open.
I2C_SDA Analog Audio In	41	OD		1.8 V	pull-up resistor is required. If unused, keep them
_	41	OD		1.8 V DC Characteristics	pull-up resistor is required. If unused, keep them
Analog Audio Ir	41 nterfaces	OD	I2C serial data		pull-up resistor is required. If unused, keep them open.

MIC_N	119	Al	Microphone analog input (-)		
MIC_P	126	AI	Microphone analog input (+)		
SPK_P	121	AO	Analog audio differential output (+)		The interface can drive 32 Ω earpiece
SPK_N	122	АО	Analog audio differential output (-)		with power rate at 37 mW @ THD = 1 %. It can also be used to drive external power amplifier devices if the output power rate cannot meet the demand. If unused, keep them open.
Antenna Interfa	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	AIO	Main antenna interface		50 Ω impedance.
ANT_GNSS	49	AI	GNSS antenna interface		$50~\Omega$ impedance. If unused, keep it open.
Antenna Tuner	Control	Interfac	ces*		
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GRFC_1	76	DO	Generic RF Controller		If unused, keep them
GRFC_2	77	DO	Conche IXI Controller		open.
Other Interface	s				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
WAKEUP_IN*	96	DI	Wake up the module		If unused, keep them
AP_READY	19	DI	Application processor ready	- 400	open.
W_DISABLE#	18	DI	Airplane mode control	1.8 V	Pull-up by default. In low voltage level, module can enter airplane mode.
					airplane mode.

USB_BOOT	75	DI	Force the module into emergency download mode	If unused, keep it open. Active high. A test point is recommended to be		
PPS_GNSS	51	DO	PPS output	reserved. Cannot pull it down when GNSS function is active.		
Reserved Pins						
Pin Name	Pin No	0.	Comment			
RESERVED		11–14, 16, 56, 57, 63–66, 78, 88, 92–95, 97–99, 103–118, 123–125 Keep them open				

NOTE

- 1. GNSS function is optional for the module. ANT_GNSS and PPS_GNSS are the GNSS pins for the module with built-in GNSS function. See *Chapter 4.2* for details about GNSS antenna interfaces.
- 2. For EG915N-EU, pins 2 and 24 are ADC pins; for EG915N-LA/EA, pins 2 and 24 are RESERVED.

3.4. Operating Modes

Table 7: Overview of Operating Modes

Modes	Details			
Full Functionality Mode	Idle	Software is active. The module remains registered on the network, and it is ready to send and receive data.		
	Voice/Data	Network connection is ongoing. Power consumption is decided by network setting and data transmission rate.		
Minimum Functionality Mode		AT+CFUN=0 can set the module into a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid.		
Airplane Mode		AT+CFUN=4 or driving W_DISABLE# pin low can set the module to airplane mode. In this case, RF function will be invalid.		
Sleep Mode	Power consumption of the module is reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.			

In this mode, the module's power supply is cut off by its power management IC. Power Down Mode

The software is inactive, while the VBAT_RF and VBAT_BB pins are still powered.

NOTE

For more information about the AT command, see document [2] for details.

3.5. Sleep Mode

With DRX technology, power consumption of the module will be reduced to an ultra-low level.

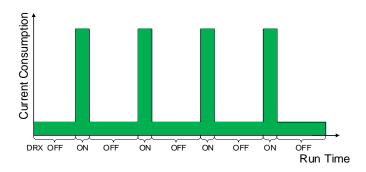


Figure 3: DRX Run Time and Current Consumption in Sleep Mode

NOTE

DRX cycle values are transmitted over the wireless network.

The following section describes ways to let the module enter sleep mode.

3.5.1. UART Application Scenario

If the MCU communicates with module via UART interfaces, the following preconditions should be met at the same time to let the module enter sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Drive MAIN_DTR high or keep it open.

The following figure shows the connection between the module and the MCU.

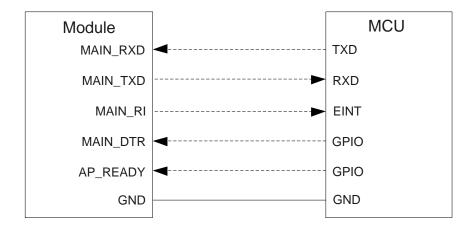


Figure 4: Sleep Mode Application via UART

- Drive MAIN_DTR low by the MCU will wake up the module.
- When the module has a URC to report, the URC will trigger the behavior of MAIN_RI pin. See
 Chapter 3.18.3 for details about MAIN_RI behaviors.

3.5.2. USB Application Scenario

For the two situations (USB application with USB suspend/resume and USB remote wakeup function and USB application with USB suspend/resume and RI function) below, three preconditions must be met to set the module into sleep mode:

- Execute AT+QSCLK=1.
- Ensure the MAIN_DTR is held high or is kept disconnected.
- Ensure the host's USB bus, which is connected to the module's USB interface, enters suspend state.

3.5.2.1. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions. The following figure shows the connection between the module and the host.

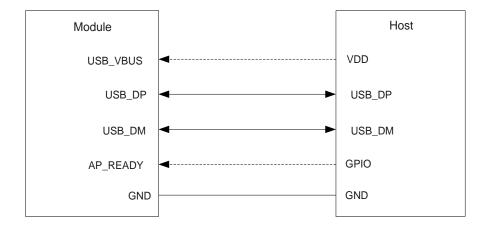


Figure 5: Sleep Mode Application with USB Remote Wakeup Function

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module sends remote wake-up signals to wake up the host via USB bus.

3.5.2.2. USB Application with USB Suspend/Resume and RI Function

If the host supports USB suspend/resume, but does not support remote wakeup function, the MAIN_RI signal is needed to wake up the host.

The following figure shows the connection between the module and the host.

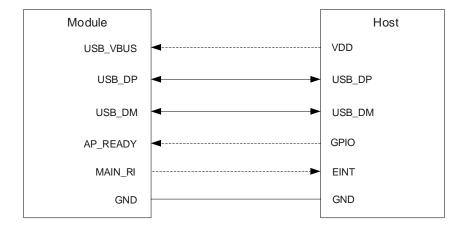


Figure 6: Sleep Mode Application with MAIN_RI

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the URC will trigger the behavior of MAIN_RI pin. See
 Chapter 3.18.3 for details about MAIN_RI behavior.

3.5.2.3. USB Application without USB Suspend Function

If the host does not support USB suspend function, disconnect USB_VBUS with an external control circuit to let the module enter sleep mode.

The following three preconditions must be met at the same time to let the module enter sleep mode.

- Execute AT+QSCLK=1 to enable the sleep mode.
- Ensure the MAIN_DTR is held at high level or keep it open.
- Disconnect the USB_VBUS power supply.

The following figure shows the connection between the module and the host.

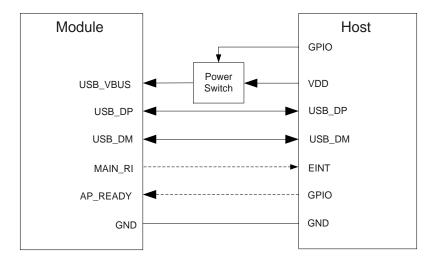


Figure 7: Sleep Mode Application without USB Suspend Function

You can wake up the module by turning on the power switch to supply power to USB_VBUS.

NOTE

- Pay attention to the level match shown in dotted line between the module and the MCU/host in the circuit diagrams.
- 2. For more information about the AT command, see **document [2]** for details.

3.6. Airplane Mode

When the module enters airplane mode, the RF function does not work and all AT commands related to the RF function are inaccessible. The following ways can be used to let the module enter airplane mode.

Hardware:

The W_DISABLE# pin is pulled up by default. Its control function for airplane mode is disabled by default, and AT+QCFG="airplanecontrol",1 can be used to enable the function. Driving the pin low can make the module enter the airplane mode.

Software:

AT+CFUN=<fun> provides the choice of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode (disable (U)SIM and RF functions).
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode (disable RF function).

For more information about the AT command, see document [2] for details.

3.7. Power Supply

3.7.1. Power Supply Pins

The module provides four VBAT pins dedicated to connecting with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT RF pins for module's RF part
- Two VBAT BB pins for module's baseband part

Table 8: Power Supply and GND Pins

Pin Name	Pin No.	I/O	Description	Comment	
VBAT_RF	52, 53		Power supply for the module's RF part	External power supply must be provided with sufficient current of at least 3.0 A.	
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	It is recommended to add a TVS diode externally. Test points are recommended to be reserved.	
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102				

3.7.2. Voltage Stability Requirements

The power supply range of the module is from 3.4 V to 4.5 V. Please make sure that the input voltage never drops below 3.4 V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 4G networks.

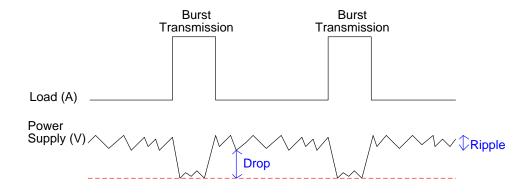


Figure 8: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100 μ F with low ESR (ESR \leq 0.7 Ω) should be used. It is recommended to reserve three multi-layer ceramic chip (MLCC) capacitors (100 nF, 33 pF and 10 pF) with the best ESD performance, and place these capacitors close to the VBAT_BB and VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star configuration. The width of VBAT_BB trace should be not less than 1 mm; and the width of VBAT_RF trace should be not less than 2 mm. In principle, the longer the VBAT trace is, the wider it will be.

In order to avoid the ripple and surge and ensure the stability of the power supply to the module, add a TVS diode with $V_{RWM} = 4.7 \text{ V}$, low-clamp voltage and peak pulse current lpp at the front end of the power supply.

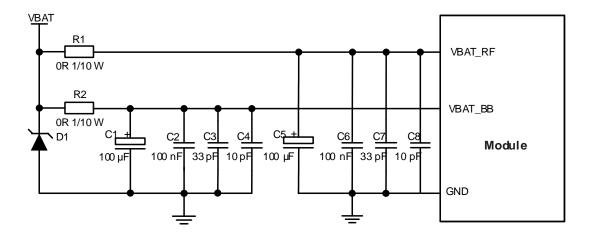


Figure 9: Star Configuration of Power Supply

3.7.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 3.0 A to the module. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used.

The following figure shows a reference design for 5 V input power source. The circuit is designed using the LDO of Microchip. The typical output of the power supply is about 3.8 V and the maximum load current is 3.0 A.

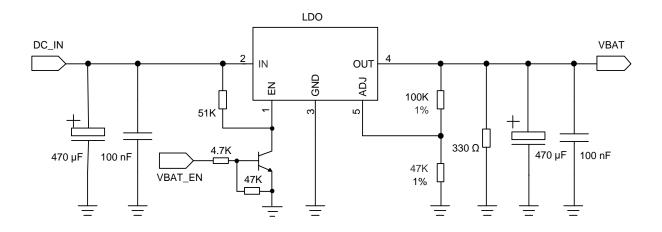


Figure 10: Reference Design of Power Supply

3.8. Turn On

3.8.1. Turn On with PWRKEY

Table 9: Pin Description of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	DI	Turn on/off the module	VBAT power domain. A test point is recommended to be reserved.

When the module is in power down mode, you can turn it on to normal mode by driving the PWRKEY pin low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY.

A simple reference design is illustrated in the following figure.



Figure 11: Reference Design of Turning on the Module with Driving Circuit

Another way to control the PWRKEY is using a button directly. a TVS diode is indispensable to be placed nearby the button for ESD protection. A reference design is shown in the following figure.

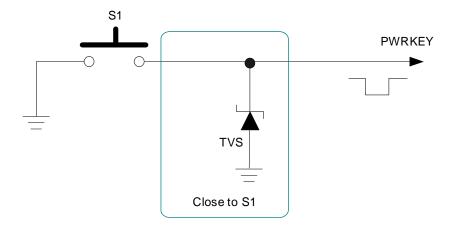


Figure 12: Reference Design of Turning on the Module with a Button

The timing of turning on the module is illustrated in the following figure.

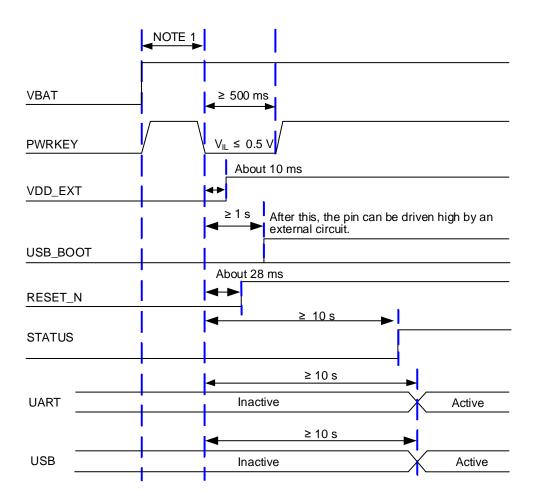


Figure 13: Power-up Timing

- 1. Ensure that VBAT is stable for at least 30 ms before pulling down the PWRKEY.
- 2. If the module needs to turn on automatically but does not need turn-off function, PWRKEY can be driven low directly to ground with a recommended 4.7 $k\Omega$ resistor.

3.9. Turn Off

The following procedures can be used to turn off the module normally:

- Use the PWRKEY pin.
- Execute AT+QPOWD.

3.9.1. Turn off with PWRKEY

Drive the PWRKEY pin low for at least 650 ms and then release it. After this, the module executes power-down procedure. The timing of turning off the module is illustrated in the following figure.

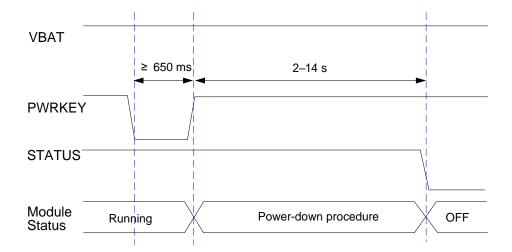


Figure 14: Power-down Timing

3.9.1.1. Turn off with AT Command

It is also a safe way to use **AT+QPOWD** to turn off the module, which is similar to the procedure of turning off the module via PWRKEY pin. See *document* [2] for details about **AT+QPOWD**.

NOTE

- To avoid corrupting the data in the internal flash, do not switch off the power supply to turn off the module when the module works normally. Only after turning off the module by PWRKEY or AT command, can you cut off the power supply.
- 2. When turning off module with the AT command, keep PWRKEY at high level after the execution of the command. Otherwise, the module will turn on again after successful turn-off.

3.10. Reset

The module can be reset by driving the RESET_N low for at least 300 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 10: Pin Description of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	17	DI	Reset the module	Active low. A test point is recommended to be reserved if unused.

The recommended design is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control RESET_N.

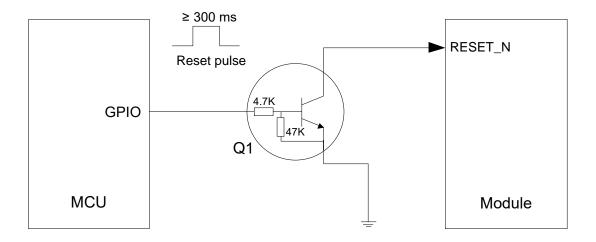


Figure 15: Reference Design of RESET_N with Driving Circuit

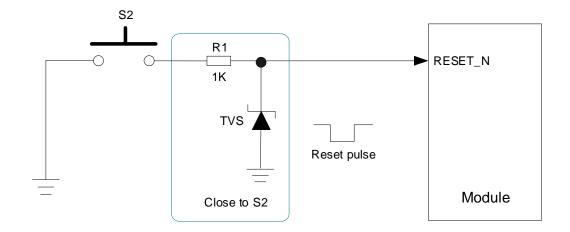


Figure 16: Reference Design of RESET_N with a Button

The reset scenario is illustrated in the following figure.

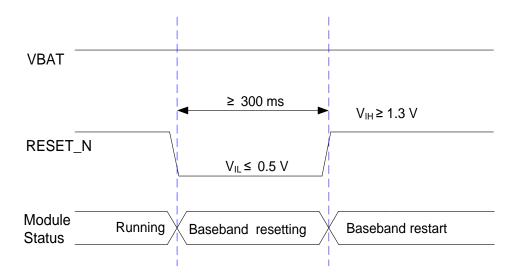


Figure 17: Reset Timing

- 1. Ensure that the load capacitance does not exceed 10 nF on PWRKEY and RESET_N pins.
- RESET_N only resets the internal baseband chip of the module and does not reset the power management chip.
- 3. Use RESET_N only when you fail to turn off the module with the AT+QPOWD and PWRKEY.

3.11. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports full-speed (12 Mbps) and high-speed (480 Mbps) modes. The USB interface can only serve in the slave mode and is used for AT command communication, data transmission, software debugging, firmware upgrade and GNSS NMEA message output. The following table shows the pin definition of USB interface.

Table 11: Pin Description of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	AI	USB connection detect	Typical: 5.0 V A test point must be reserved.
USB_DP	9	AIO	USB differential data (+)	Requires differential impedance
USB_DM	10	AIO	USB differential data (-)	of 90 Ω. USB 2.0 compliant.Test points must be reserved.

For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.

Reserve test points for debugging and firmware upgrade in your designs. The following figure shows a reference design of USB interface.

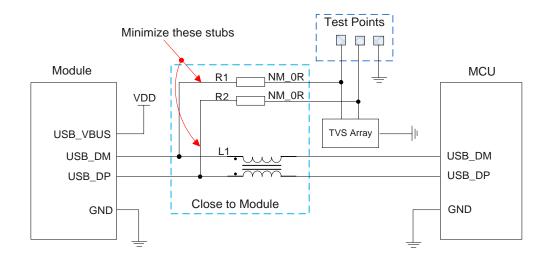


Figure 18: Reference Design of USB Application

A common mode choke L1 is recommended to be added in series between the module and MCU to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R1 and R2) should be added in series between the module and the test points to facilitate debugging, and the resistors are not mounted by default. To ensure the signal integrity of USB data traces, L1, R1 and R2 must be placed close to the module, and resistors R1 and R2 should be placed close to each other. The extra stubs of trace must be as short as possible.

When designing the USB interface, follow the following principles to meet USB 2.0 specifications.

- Route the USB signal traces as a differential pair with ground surrounded. The impedance of USB differential trace is 90 Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. Route
 the USB differential traces of equal length in inner-layer of the PCB, and surround the traces with
 ground on that layer and with ground planes above and below.
- Pay attention to the selection of the ESD protection component on the USB data trace. Its parasitic capacitance should not exceed 2 pF and should be placed as close as possible to the USB interface.

3.12. **USB_BOOT**

The module provides a USB_BOOT pin. Before the module is turned on, pull up USB_BOOT to 1.8 V, or short-circuit VDD_EXT and USB_BOOT, and the module will enter emergency download mode. In this mode, the module supports firmware upgrade over USB interface.

Table 12: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Force the module into emergency download mode	1.8 V power domain. Active high.A test point is recommended to be reserved.

The following figure shows a reference design and timing sequence for entering emergency download mode of USB BOOT interface.

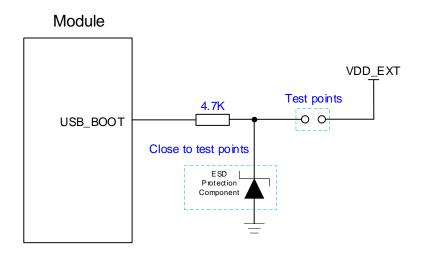


Figure 19: Reference Design of USB_BOOT Interface

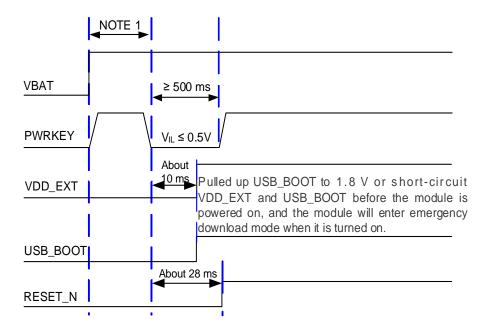


Figure 20: Timing Sequence for Entering Emergency Download Mode

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is not less than 30 ms.
- 2. When using MCU to control module to enter the emergency download mode, follow the above timing sequence. It is not recommended to pull up USB_BOOT to 1.8 V before powering up VBAT. Directly connect the test points as shown in *Figure 19* can manually force the module to enter download mode.

3.13. (U)SIM Interfaces

The module provides two (U)SIM interfaces, which meet ETSI and IMT-2000 requirements. Either 1.8 V or 3.0 V (U)SIM card is supported. The module supports Dual SIM Single Standby.

Table 13: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM1_VDD	43	РО	(U)SIM1 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_RST	44	DO	(U)SIM1 card reset	
USIM1_DATA	45	DIO	(U)SIM1 card data	
USIM1_CLK	46	DO	(U)SIM1 card clock	
USIM1_GND	47		Specified ground for (U)SIM1	Connect to main GND of PCB.
USIM2_DET*	83	DI	(U)SIM2 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM2_CLK	84	DO	(U)SIM2 card clock	
USIM2_RST	85	DO	(U)SIM2 card reset	
USIM2_DATA	86	DIO	(U)SIM2 card data	
USIM2_VDD	87	РО	(U)SIM2 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.

The module supports (U)SIM card hot-plug via the USIM1_DET pin, and both high- and low-level detection are supported. The function is disabled by default and can be configured via **AT+QSIMDET**. See **document [2]** for more details.

The following figure shows a reference design for (U)SIM card interface with an 8-pin (U)SIM card connector.

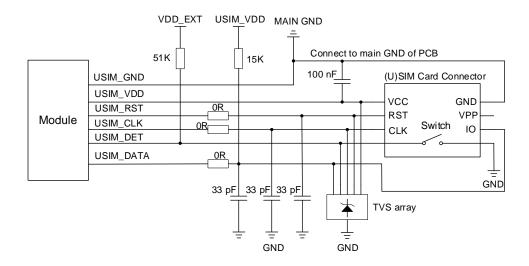


Figure 21: Reference Design of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If the function of (U)SIM card hot-plug is not needed, please keep USIM_DET disconnected.

A reference design for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

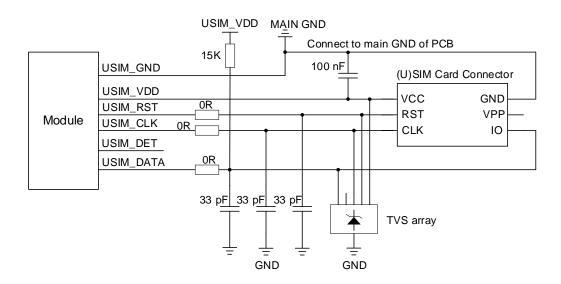


Figure 22: Reference Design of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in your applications, follow the criteria below in (U)SIM circuit design:

- Place the (U)SIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.
- Keep (U)SIM card signals away from RF and power supply traces.
- Ensure that the ground between the module and the (U)SIM card connector is short and wide. Keep
 the trace width of ground and USIM_VDD not less than 0.5 mm to maintain the same electric
 potential. If the ground is complete on your PCB, USIM_GND can be connected to PCB ground
 directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- Make sure the bypass capacitor between USIM_VDD and GND less than 1 μF, and place it as close to the (U)SIM card connector as possible.
- To offer good ESD protection, it is recommended to add a TVS array whose parasitic capacitance should not be more than 15 pF. Add 0 Ω resistors in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors in parallel on USIM_DATA, USIM_CLK and USIM_RST lines are used for filtering interference of EGSM900. Note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

3.14. UART

The module provides three UART: main UART, auxiliary UART* and debug UART. Their features are described below.

Table 14: UART Interface Information

UART Types	Supported Baud Rates	Default Baud Rates	Functions
Main UART	4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps, 1Mbps	115200 bps	Data transmission and AT command communication. RTS and CTS hardware flow control is supported.
Auxiliary UART*	115200 bps	115200 bps	Communication with peripherals. RTS and CTS

			hardware flow
			control is
			supported.
			Output of partial
Debug UART	115200 bps	115200 bps	logs and GNSS
			NMEA message

Table 15: Pin Definition of Main UART

Pin Name	Pin No.	I/O	Description	Comment
MAIN_DTR	30	DI	Main UART data terminal ready	1.8 V power domain.
MAIN_RXD	34	DI	Main UART receive	If unused, keep them
MAIN_TXD	35	DO	Main UART transmit	open.
MAIN_CTS	36	DO	Clear to send signal from the module	Connect to MCU's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module	Connect to MCU's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_DCD	38	DO	Main UART data carrier detect	1.8 V power domain.
MAIN_RI	39	DO	Main UART ring indication	If unused, keep them open.

Table 16: Pin Definition of Auxiliary UART*

Pin Name	Pin No.	I/O	Description	Comment	
AUX_RTS	25	DI	Request to send signal to the module	Connect to MCU's RTS. 1.8 V power domain. If unused, keep it open.	
AUX_CTS	26	DO	Clear to send signal from the module	Connect to MCU's CTS. 1.8 V power domain. If unused, keep it open.	
AUX_TXD	27	DO	Auxiliary UART transmit	1.8 V power domain.	
AUX_RXD	28	DI	Auxiliary UART receive	If unused, keep them open.	

Table 17: Pin Definition of Debug UART

Pin Name	Pin No.	I/O	Description	Comment
DBG_RXD	22	DI	Debug UART receive	1.8 V power domain.
DBG_TXD	23	DO	Debug UART transmit	Test points must be reserved.

The module provides a 1.8 V UART interface. Use a voltage-level translator if the application is equipped with a 3.3 V UART interface. A voltage-level translator TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.

Figure 23: Reference Design with a Voltage-level Translator

Visit http://www.ti.com for more information.

Another example with transistor circuit is shown as below. For the design of circuits in dotted lines, see that shown in solid lines, but pay attention to the direction of connection.

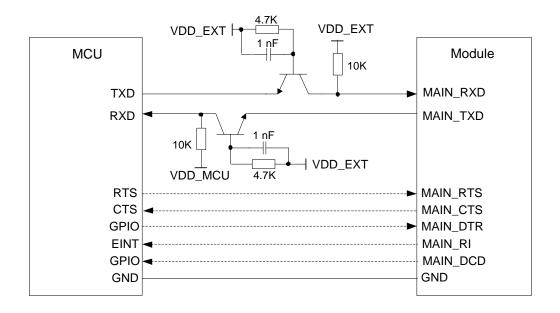


Figure 24: Reference Design with Transistor Circuit

- 1. Transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Note that the module's CTS is connected to MCU's CTS, and the module's RTS is connected to MCU's RTS.

3.15. PCM and I2C Interfaces

The module provides one Pulse Code Modulation (PCM) interface and one I2C interface.

Table 18: Pin Definition of PCM and I2C Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_CLK	4	DO	PCM clock	
PCM_SYNC	5	DO	PCM data frame sync	1.8 V power domain.
PCM_DIN	6	DI	PCM data input	If unused, keep them open.
PCM_DOUT	7	DO	PCM data output	_
I2C_SCL	40	OD	I2C serial clock	An external 1.8 V pull-up resistor is

I2C SDA	41	OD	I2C serial data	required.
120_3DA	41	OD	120 Serial data	If unused, keep it open.

PCM interface supports short frame mode: module can only be used as master device.

The module supports 16-bit linear encoding format. The following figure is the short frame mode timing diagram (PCM_SYNC = 8 kHz, PCM_CLK = 2048 kHz).

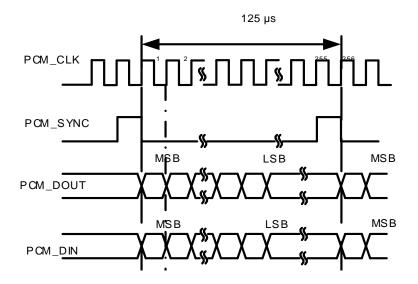


Figure 25: Timing of Short Frame Mode

In short frame mode, data is sampled on the falling edge of PCM_CLK, and sent on the rising edge. The falling edge of PCM_SYNC represents the high effective bit. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz, and 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and 4096 kHz PCM_CLK at 16 kHz PCM_SYNC.

The default configuration is short frame mode, PCM_CLK = 2048 kHz, PCM_SYNC = 8 kHz.

The following figure shows a reference design of PCM interface with an external codec IC.

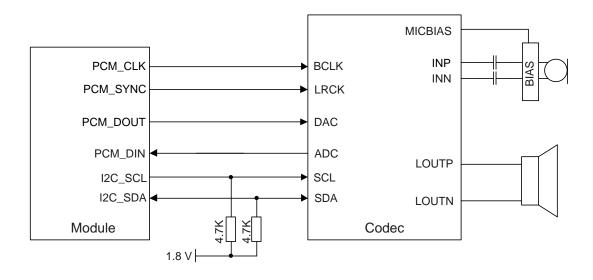


Figure 26: Reference Design of PCM and I2C Application with Audio Codec

- 1. It is recommended to reserve an RC (R = 0 Ω , C = 33 pF) circuit on the PCM traces, especially for PCM_CLK.
- 2. The module can only be used as a master device in applications related to PCM and I2C interfaces.

3.16. Analog Audio Interfaces

The module provides one analog input channel and one analog output channel.

Table 19: Pin Definition of Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
MICBIAS	120	РО	Bias voltage output for microphone		
MIC_P	126	Al	Microphone analog input (+)	If unused, keep them open.	
MIC_N	119	Al	Microphone analog input (-)	- •	
SPK_P	121	AO	Analog audio differential output (+)	The interface can drive	
SPK_N	122	АО	Analog audio differential output (-)	22 Ω earpiece with power rate at 37 mW @ THD = 1 %. It can also be used to drive external	

power amplifier devices
if the output power rate
cannot meet the
demand.
If unused, keep them
open.

- Al channels are differential input channels, which can be applied for input of microphone (usually an electret microphone is used).
- AO channels are differential output channels, which can be applied for output of earpiece and loudspeaker.

You can use the AT+QMIC to adjust the input gain of the microphone, or AT+CLVL to adjust the volume gain output to the handset. The AT+QSIDET is used to set the side tone gain. For details, see document [3].

3.16.1. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10 pF and 33 pF) for filtering out RF interference, thus reducing TDD noise. Without this capacitor, TDD noise could be heard during the call. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you need to discuss with your capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. Sometimes, even no RF filtering capacitor is required. Therefore, a suitable capacitor can be selected based on the test results. The filter capacitor on the PCB should be placed as close as possible to the audio device or audio interface, and the trace should be as short as possible. The filter capacitor should be passed before reaching other connection points.

To decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

3.16.2. Microphone Interface Design

The microphone channel reference design is shown in the following figure.

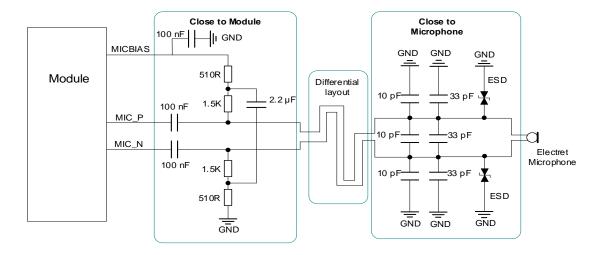


Figure 27: Reference Design for Microphone Interface

MIC channel is sensitive to ESD, so it is not recommended to remove the ESD protection components used for protecting the MIC.

3.16.3. Earpiece and Loudspeaker Interface Design

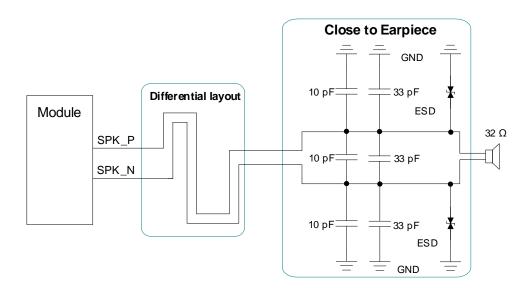


Figure 28: Reference Design for Earpiece Interface

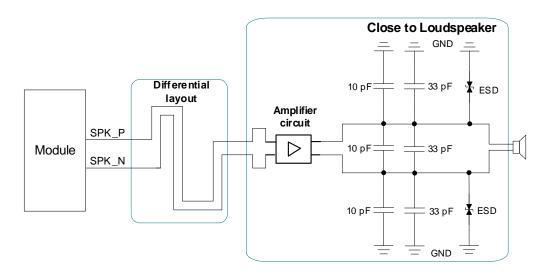


Figure 29: Reference Design of External Audio Amplifier Output

For differential input and output audio power amplifiers, please visit http://www.ti.com to obtain the required devices. There are also many audio power amplifiers with the same performance to choose from on the market.

3.17. ADC Interfaces

ADC (analog-to-digital conversion) function is only supported by EG915N-EU module, and the module provides two ADC interfaces.

To improve the accuracy of ADC, surround the trace of ADC with ground.

Table 20: Pin Definition of EG915N-EU ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
ADC1	2	Al	General-purpose ADC interface	 If unused, keep them open. 	
ADC0	24	Al	General-purpose ADC interface		

The voltage value on ADC pins can be read via AT+QADC=<port>:

- AT+QADC=0: read the voltage value on ADC0
- AT+QADC=1: read the voltage value on ADC1

For more details about these AT commands, see document [2].

Table 21: Characteristics of ADC Interfaces of EG915N-EU

Parameter	Min.	Тур.	Max.	Unit
ADC0 voltage range	0	-	VBAT_BB	V
ADC1 voltage range	0	-	VBAT_BB	V
ADC resolution	-	-	12	bits

- 1. When the module is not powered by VBAT, the ADC interface cannot be directly connected to any input voltage.
- 2. If the collected voltage is greater than 4.5 V, it is recommended to use a resistor divider circuit input for the ADC pin. When designing, reserve a 1 nF capacitor at both ends of the grounding divider resistor. The capacitor is not mounted by default.

3.18. Indication Signal

Table 22: Pin Definition of Indication Signal

Pin Name	Pin No.	I/O	Description	Comment	
NET_STATUS	21	DO	Indicate the module's network activity status		
STATUS	20	DO	Indicate the module's operation status	1.8 V power domain. If unused, keep them open.	
MAIN_RI	39	DO	Main UART ring indication	-	

3.18.1. Network Status Indication

The network indication pins can drive the network status indicators. The module provides a network status indication pin: NET_STATUS. The following tables describe pin definition and logic level changes in different network status.

Table 23: Working State of Network Activity Indicator

Pin Name	Logic Level Changes	Network Status
	Flicker slowly (200 ms high/1800 ms low)	Network searching
NET STATUS	Flicker slowly (1800 ms high/200 ms low)	Idle
NET_STATUS	Flicker quickly (125 ms high/125 ms low)	Data transmission is ongoing
	Always High (Always on)	Voice calling

A reference design is shown in the following figure.

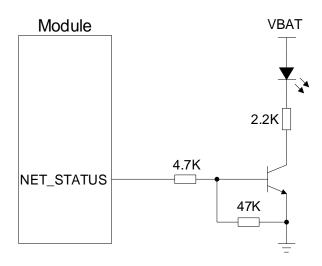


Figure 30: Reference Design of Network Status Indication

3.18.2. STATUS

The STATUS pin is an output for module's operation status indication. When the module is turned on normally, the STATUS will output high level.

The following figure shows a reference design of STATUS.

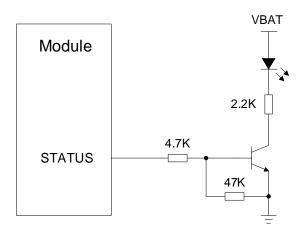


Figure 31: Reference Design of STATUS

3.18.3. MAIN_RI

Send **AT+QCFG="risignaltype","physical"** so that no matter on which port a URC is presented, the URC will trigger the behaviors of MAIN_RI pin.

NOTE

AT+QURCCFG allows you to set the main UART, USB AT port or USB modem port as the URC output port. The USB AT port is the URC output port by default. For more details, see **document [2]**.

You can configure MAIN_RI behaviors flexibly. The default behavior of the MAIN_RI is shown as below.

Table 24: Default Behaviors of the MAIN_RI

State	Response
Idle	MAIN_RI keeps at high level
URC	MAIN_RI outputs 120 ms low pulse when a new URC returns

The indication mode of MAIN_RI can be configured through multiple commands. For example, AT+QCFG="urc/ri/ring" can be used to configure the behavior of MAIN_RI during URC reporting. See *document* [2] for details.

4 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

The module includes one main antenna interface. The module with built-in GNSS function also has one GNSS antenna interface. The impedance of antenna interface is 50Ω .

4.1. Cellular Network

4.1.1. Main Antenna Interface & Frequency Bands

Table 25: Pin Definition of Main Antenna

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	60	AIO	Main antenna interface	50 Ω impedance.

Table 26: EG915N-EU Operating Frequency

3GPP Band	Transmit	Receive	Unit	
EGSM900	880–915	925–960	MHz	
DCS1800	1710–1785	1805–1880	MHz	
LTE-FDD B1	1920–1980	2110–2170	MHz	
LTE-FDD B3	1710–1785	1805–1880	MHz	
LTE-FDD B7	2500–2570	2620–2690	MHz	
LTE-FDD B8	880–915	925–960	MHz	
LTE-FDD B20	832–862	791–821	MHz	

Table 27: EG915N-LA Operating Frequency

3GPP Band	Transmit	Receive	Unit
GSM850	824-849	869-894	MHz
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
PCS1900	1850-1910	1930-1990	MHz
LTE-FDD B2	1850-1910	1930-1990	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz
LTE-FDD B4	1710-1755	2110-2155	MHz
LTE-FDD B5	824–849	869–894	MHz
LTE-FDD B7	2500–2570	2620–2690	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-FDD B28	703–748	758–803	MHz
LTE-FDD B66	1710–1780	2110–2180	MHz

Table 28: EG915N-EA Operating Frequency

3GPP Band	Transmit	Receive	Unit
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
LTE-FDD B1	1920–1980	2110–2170	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz
LTE-FDD B7	2500–2570	2620–2690	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-FDD B20	832–862	791–821	MHz
LTE-FDD B28	703–748	758–803	MHz

4.1.2. Antenna Tuner Control Interfaces*

The module can use GRFC (generic RF control) interfaces to control external antenna tuner.

Table 29: Pin Definition of GRFC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
GRFC_1	76	DO	Generic RF Controller	If unused, keep them
GRFC_2	77	DO		open.

Table 30: EG915N-EU Truth Table of GRFC Interface (Unit: MHz)

GRFC_1 Level	GRFC_2 Level	Frequency Range	Bands
Low	Low	-	-
Low	High	832–862	LTE B20
High	Low	880–915	LTE B8, EGSM900
High	High	1920–1980 1710–1785 2500–2570	LTE B1/B3/B7 DCS1800

Table 31: EG915N-LA Truth Table of GRFC Interface (Unit: MHz)

GRFC_1 Level	GRFC_2 Level	Frequency Range	Bands
Low	Low	703–748	LTE B28
Low	High	824–849	LTE B5, GSM850
High	Low	880–915	LTE B8, EGSM900
		1850–1910	
High	Lliab	1710–1785	LTE B/B3/B4/B7/B66
	High	1710–1755	DCS1800, PCS1900
		2500–2570	

Table 32: EG915N-EA Truth Table of GRFC Interface (Unit: MHz)

GRFC_1 Level	GRFC_2 Level	Frequency Range	Bands
Low	Low	703–748	LTE B28
Low	High	832–862	LTE B20
High	Low	880–915	LTE B8, EGSM900
High	High	1920–1980 1710–1785 2500–2570	LTE B1/B3/B7 DCS1800

4.1.3. Transmitting Power

The following tables show the RF output power of the module.

Table 33: EG915N-EU RF Transmitting Power

Frequency Bands	Max.	Min.
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B7/B8/B20	23 dBm ±2 dB	< -39 dBm

Table 34: EG915N-LA RF Transmitting Power

Frequency Bands	Max.	Min.
GSM850	33 dBm ±2 dB	5 dBm ±5 dB
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
PCS1800	30 dBm ±2 dB	0 dBm ±5 dB
GSM850 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB

EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
PCS1900 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
LTE-FDD B2/B3/B4/B5/B7/B8/B28/B66	23 dBm ±2 dB	< -39 dBm

Table 35: EG915N-EA RF Transmitting Power

Frequency Bands	Max.	Min.
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B7/B8/B20/B28	23 dBm ±2 dB	< -39 dBm

In GPRS 4 slots Tx mode, the maximum output power is reduced by 4 dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

4.1.4. Receiver Sensitivity

The following tables show conducted RF receiver sensitivity of the module.

Table 36: EG915N-EU Conducted RF Receiver Sensitivity

Enament Donale	Red	eiver Sensitiv	ACDD (OIMO)	
Frequency Bands	Primary	Diversity	SIMO	3GPP (SIMO)
EGSM900	-109 dBm	-	-	-102 dBm
DCS1800	-104 dBm	-	-	-102 dBm
LTE-FDD B1 (10 MHz)	-98 dBm	-	-	-96.3 dBm

LTE-FDD B3 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B7 (10 MHz)	-97 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B20 (10 MHz)	-98 dBm	-	-	-93.3 dBm

Table 37: EG915N-LA Conducted RF Receiver Sensitivity

Fragueney Bondo	Rec	eiver Sensitivi	20DD (CIMO)	
Frequency Bands	Primary	Diversity	SIMO	3GPP (SIMO)
GSM850	-108 dBm	-	-	-102 dBm
EGSM900	-108 dBm	-	-	-102 dBm
DCS1800	-106 dBm	-	-	-102 dBm
PCS1900	-106 dBm	-	-	-102 dBm
LTE-FDD B2 (10 MHz)	-99 dBm	-	-	-94.3 dBm
LTE-FDD B3 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B4 (10 MHz)	-98.5 dBm	-	-	-9.3 dBm
LTE-FDD B5 (10 MHz)	-99.5 dBm	-	-	-94.3 dBm
LTE-FDD B7 (10 MHz)	-97 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-99 dBm	-	-	-93.3 dBm
LTE-FDD B28 (10 MHz)	-99 dBm	-	-	-94.8 dBm
LTE-FDD B66 (10 MHz)	-99 dBm	-	-	-96.5 dBm

Table 38: EG915N-EA Conducted RF Receiver Sensitivity

Fraguency Panda	Rece	eiver Sensitivi	2000 (CIMO)	
Frequency Bands	Primary	Diversity	SIMO	3GPP (SIMO)
EGSM900	-108 dBm	-	-	-102 dBm
DCS1800	-106 dBm	-	-	-102 dBm
LTE-FDD B1 (10 MHz)	-99 dBm	-	-	-96.3 dBm
LTE-FDD B3 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B7 (10 MHz)	-97 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-100 dBm	-	-	-93.3 dBm
LTE-FDD B20 (10 MHz)	-100.8 dBm	-	-	-93.3 dBm
LTE-FDD B28 (10 MHz)	-99 dBm	-	-	-94.8 dBm

4.1.5. Reference Design

A reference design of ANT_MAIN antenna is shown as below. A π -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.

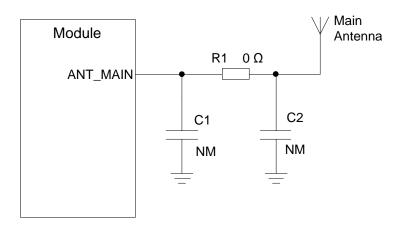


Figure 32: Reference Design for Main Antenna Interface

NOTE

Place the π-type matching components (R1, C1 and C2) as close to the antenna as possible.

4.1.6. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

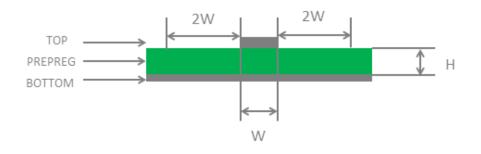


Figure 33: Microstrip Design on a 2-layer PCB

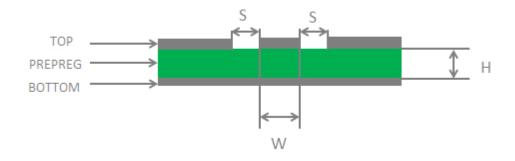


Figure 34: Coplanar Waveguide Design on a 2-layer PCB

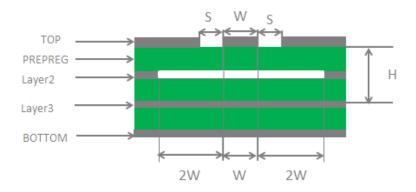


Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

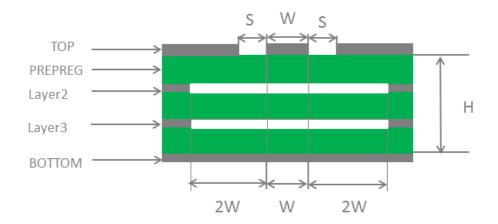


Figure 36: Coplanar Wavequide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [5].

4.2. GNSS (Optional)

GNSS function is optional for the module. Only the module with built-in GNSS function integrates a multi-constellation GNSS receiver.

For EG915N series, the built-in GNSS parameters are as follows:

- Supports GPS, GLONASS, Galileo, BDS and QZSS positioning system.
- Supports NMEA 0183 protocol. NMEA message can be output by USB interface or debug UART via AT command. For USB interface, the function can be enabled by AT+QGPSCFG="outport",usbnmea; for debug UART, the function can be enabled by AT+QGPSCFG="outport",uartdebug (refresh rate for positioning: 1 Hz).
- The module's GNSS function is disabled by default. It must be enabled via AT+QGPS.

For more information about the AT command, see document [4].

4.2.1. GNSS Antenna Interface & Frequency Bands

The following table lists the pin definition and frequency characteristics of the GNSS antenna interface.

Table 39: GNSS Antenna Pin Definition

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	49	AI	GNSS antenna interface	$50~\Omega$ impedance. If unused, keep it open.

Table 40: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42 ±1.023 (L1)	MHz
GLONASS	1597.5–1605.8 (L1)	MHz
Galileo	1575.42 ±2.046 (E1)	MHz
BDS	1561.098 ±2.046 (B1I)	MHz
QZSS	1575.42 ±1.023 (L1)	MHz

4.2.2. GNSS Performance

Table 41: EG915N Series GNSS Performance

Parameter	Description	Тур.	Unit
Sensitivity	Acquisition	-145	dBm
	Reacquisition	-159	dBm
	Tracking	-159	dBm
	Cold start @ open sky	27.98	S
TTFF	Warm start @ open sky	27.52	S
	Hot start @ open sky	0.12	S
Accuracy	CEP-50	3.7	m

NOTE

- 1. For more information about GNSS performance, contact Quectel Technical Support.
- 2. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
- 3. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
- 4. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

4.2.3. GNSS Antenna Reference Design

4.2.3.1. Reference Design for GNSS Active Antenna

GNSS active antenna connection reference design is shown in the figure below.

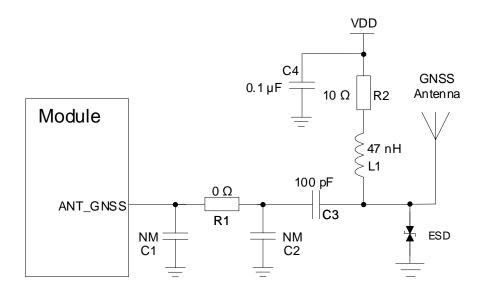


Figure 37: GNSS Active Antenna Reference Design

The power supply voltage range of the external active antenna is 2.8-4.3 V, and the typical value is 3.3 V.

4.2.3.2. Reference Design for GNSS Passive Antenna

GNSS passive antenna connection reference design is shown in the figure below.

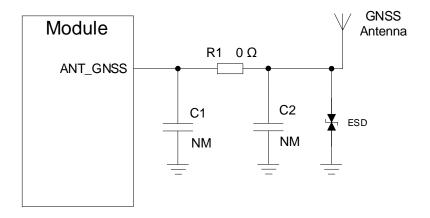


Figure 38: GNSS Passive Antenna Reference Design

C1, R1 and C2 form the matching circuit, which is recommended to be reserved for adjusting the antenna impedance. Among them, C1 and C2 are not mounted by default, and R1 is only mounted with 0 Ω resistor. The impedance of the RF trace should be controlled at about 50 Ω , and the trace should be as short as possible.

- 1. You can select an external LDO for power supply according to the active antenna requirements.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.
- 3. The junction capacitance of the antenna interface ESD protection component should not exceed 0.05 pF.

4.2.4. GNSS Antenna Routing Guidelines

In your application design, the following design principles should be followed:

- The distance between the GNSS antenna and the main antenna should be as large as possible.
- Digital signals such as (U)SIM card, USB interface, camera module, SD card and display interface.
 should be far away from the antenna.
- Sensitive analog signals should be far away from GNSS signal paths, and ground holes should be added for isolation and protection.
- ANT GNSS trace maintains 50 Ω characteristic impedance.

For the reference design of GNSS antenna interface and antenna precautions, see Chapter 4.2.

4.3. Antenna Design Requirements

Table 42: Antenna Requirements

Туре	Requirements		
GSM/LTE	VSWR: ≤ 2 Efficiency: > 30 % Max input power: 50 W Input impedance: 50 Ω Cable insertion loss: ■ <1 dB: LB (< 1 GHz)		
	 <1.5 dB: MB (1–2.3 GHz) < 2 dB: HB (> 2.3 GHz) 		
GNSS	 Frequency range: L1: 1559–1609 MHz Polarization: RHCP or linear VSWR: ≤ 2 Active antenna noise factor: < 1.5 dB Active antenna gain: > -2 dBi 		

Active antenna internal LNA gain: < 17 dB

4.4. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose.

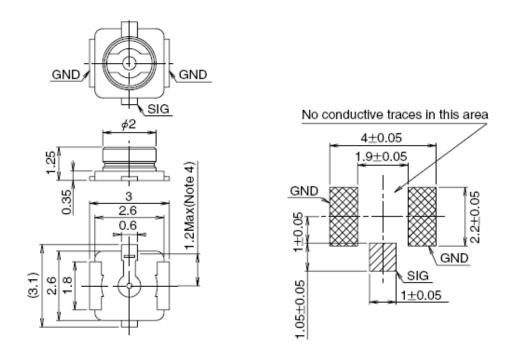


Figure 39: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series mated plug listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088	
Part No.	4	E 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	87 3.4 92 93	87	5	
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)	
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable	
Weight (mg)	53.7	59.1	34.8	45.5	71.7	
RoHS	YES					

Figure 40: Specifications of Mated Plugs

The following figure describes the space factor of mated connector.

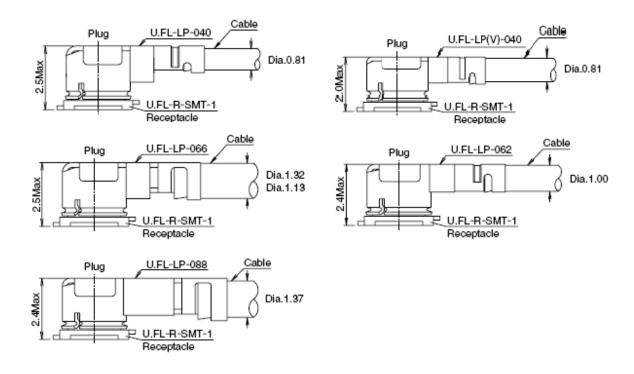


Figure 41: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit http://hirose.com.

5 Electrical Characteristics & Reliability

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 43: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_BB/VBAT_RF	-0.3	6.0	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	-	0.8	A
Peak Current of VBAT_RF	-	2.2	A
Voltage at Digital Pins	-0.3	2.3	V

5.2. Power Supply Ratings

Table 44: Power Supply Ratings

Paramete	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must be kept between the minimum and maximum values.	3.4	3.8	4.5	V
	Voltage drop during burst transmission	Maximum power control level	-	-	400	mV

I _{VBAT}	Peak supply current	Maximum power control level	-	2.0	2.5	А
USB_VBUS	USB connection detect		3.0	5.0	5.25	V

5.3. Power Consumption

The power consumption of the module is shown in the table below.

Table 45: EG915N-EU Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	26.64	μΑ
	AT+CFUN=0 (USB disconnected)	0.87	mA
	EGSM900 @ DRX = 2 (USB disconnected)	1.82	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.32	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.47	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.16	mA
	DCS1800 @ DRX = 2 (USB disconnected)	1.92	mA
Clash state	DCS1800 @ DRX = 5 (USB disconnected)	1.36	mA
Sleep state	DCS1800 @ DRX = 5 (USB suspend)	1.53	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.19	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.89	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.44	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.62	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.24	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.13	mA
Idle state	EGSM900 @ DRX = 5 (USB disconnected)	19.34	mA

	EGSM900 @ DRX = 5 (USB connected)	29.04	mA
	DCS1800 @ DRX = 5 (USB disconnected)	19.36	mA
	DCS1800 @ DRX = 5 (USB connected)	29.02	mA
	LTE-FDD @ PF = 64 (USB disconnected)	19.70	mA
	LTE-FDD @ PF = 64 (USB connected)	29.60	mA
	EGSM900 4DL/1UL @ 32.88 dBm	235.41	mA
	EGSM900 3DL/2UL @ 32.79 dBm	412.87	mA
	EGSM900 2DL/3UL @ 31.52 dBm	511.46	mA
GPRS data	EGSM900 1DL/4UL @ 29.17 dBm	529.85	mA
transmission	DCS1800 4DL/1UL @ 29.31 dBm	159.05	mA
	DCS1800 3DL/2UL @ 29.24dBm	263.67	mA
	DCS1800 2DL/3UL @ 27.77 dBm	317.38	mA
	DCS1800 1DL/4UL @ 25.98 dBm	345.74	mA
	EGSM900 4DL/1UL @ 26.39 dBm	144.67	mA
	EGSM900 3DL/2UL @ 25.9 dBm	229.64	mA
	EGSM900 2DL/3UL @ 25.15 dBm	287.01	mA
EDGE data	EGSM900 1DL/4UL @ 22.14 dBm	310.43	mA
transmission	DCS1800 4DL/1UL @ 25.01 dBm	128.51	mA
	DCS1800 3DL/2UL @ 25.09 dBm	200.49	mA
	DCS1800 2DL/3UL @ 23.31 dBm	256.65	mA
	DCS1800 1DL/4UL @ 21.27 dBm	298.11	mA
	LTE-FDD B1	594.00	mA
LTE data	LTE-FDD B3	607.00	mA
transmission	LTE-FDD B7	658.00	mA
	LTE-FDD B8	618.00	mA

	LTE-FDD B20	523.00	mA
	EGSM900 PCL = 5 @ 32.53 dBm	225.96	mA
	EGSM900 PCL = 12 @ 19.77 dBm	87.22	mA
CSM voice call	EGSM900 PCL = 19 @ 5.37 dBm	54.57	mA
GSM voice call	DCS1800 PCL = 0 @ 29.25 dBm	151.06	mA
	DCS1800 PCL = 7 @ 16.43 dBm	71.09	mA
	DCS1800 PCL = 15 @ 0.28 dBm	50.98	mA

Table 46: EG915N-LA Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	24.96	μΑ
	AT+CFUN=0 (USB disconnected)	0.90	mA
	EGSM900 @ DRX = 2 (USB disconnected)	1.94	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.49	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.65	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.37	mA
	DCS1800 @ DRX = 2 (USB disconnected)	2.00	mA
Sloop state	DCS1800 @ DRX = 5 (USB disconnected)	1.53	mA
Sleep state	DCS1800 @ DRX = 5 (USB suspend)	1.69	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.38	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.87	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.47	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.62	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.23	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.11	mA

	EGSM900 @ DRX = 5 (USB disconnected)	16.40	mA
	EGSM900 @ DRX = 5 (USB connected)	29.17	mA
المال مدمده	DCS1800 @ DRX = 5 (USB disconnected)	16.44	mA
Idle state	DCS1800 @ DRX = 5 (USB connected)	29.15	mA
	LTE-FDD @ PF = 64 (USB disconnected)	16.21	mA
	LTE-FDD @ PF = 64 (USB connected)	28.89	mA
	GSM850 4DL/1UL @ 32.66 dBm	224.00	mA
	GSM850 3DL/2UL @ 32.54 dBm	403.00	mA
	GSM850 2DL/3UL @ 31.12 dBm	502.00	mA
	GSM850 1DL/4UL @ 28.95 dBm	530.00	mA
	EGSM900 4DL/1UL @ 32.46 dBm	225.00	mA
	EGSM900 3DL/2UL @ 32.37 dBm	406.00	mA
	EGSM900 2DL/3UL @ 31.03 dBm	511.00	mA
GPRS data	EGSM900 1DL/4UL @ 28.85 dBm	547.00	mA
transmission	DCS1800 4DL/1UL @ 29.66 dBm	162.00	mA
	DCS1800 3DL/2UL @ 29.59 dBm	282.00	mA
	DCS1800 2DL/3UL @ 27.98 dBm	344.00	mA
	DCS1800 1DL/4UL @ 25.88 dBm	379.00	mA
	PCS1900 4DL/1UL @ 29.73 dBm	153.00	mA
	PCS1900 3DL/2UL @ 29.68 dBm	265.00	mA
	PCS1900 2DL/3UL @ 28.26 dBm	331.00	mA
	PCS1900 1DL/4UL @ 26.36 dBm	362.00	mA
	GSM850 4DL/1UL @ 25.85 dBm	135.00	mA
EDGE data transmission	GSM850 3DL/2UL @ 25.8 dBm	235.00	mA
	GSM850 2DL/3UL @ 24.12 dBm	281.00	mA

	GSM850 1DL/4UL @ 22.76 dBm	324.00	mA
	EGSM900 4DL/1UL @ 26.56 dBm	135.00	mA
	EGSM900 3DL/2UL @ 26.37 dBm	236.00	mA
	EGSM900 2DL/3UL @ 24.63 dBm	293.00	mA
	EGSM900 1DL/4UL @ 23.51 dBm	338.00	mA
	DCS1800 4DL/1UL @ 25.50 dBm	123.00	mA
	DCS1800 3DL/2UL @ 25.66 dBm	218.00	mA
	DCS1800 2DL/3UL @ 24.47 dBm	282.00	mA
	DCS1800 1DL/4UL @ 22.13 dBm	328.00	mA
	PCS1900 4DL/1UL @ 27.41 dBm	133.00	mA
	PCS1900 3DL/2UL @ 27.25 dBm	235.00	mA
	PCS1900 2DL/3UL @ 24.11 dBm	278.00	mA
	PCS1900 1DL/4UL @ 21.61 dBm	314.00	mA
	LTE-FDD B2	659.00	mA
	LTE-FDD B3	697.00	mA
	LTE-FDD B4	669.00	mA
LTE data	LTE-FDD B5	590.00	mA
transmission	LTE-FDD B7	709.00	mA
	LTE-FDD B8	610.00	mA
	LTE-FDD B28	615.00	mA
	LTE-FDD B66	573.00	mA
	GSM850 PCL = 5 @ 32.66 dBm	234.00	mA
GSM voice call	GSM850 PCL = 12 @ 19.48 dBm	95.00	mA
Goivi voice call	GSM850 PCL = 19 @ 5.10 dBm	63.00	mA
	EGSM900 PCL = 5 @ 32.61 dBm	242.00	mA

EGSM900 PCL = 12 @ 19.30 dBm	93.00	mA
EGSM900 PCL = 19 @ 4.13 dBm	61.00	mA
DCS1800 PCL = 0 @ 29.43 dBm	159.00	mA
DCS1800 PCL = 7 @ 16.72 dBm	80.00	mA
DCS1800 PCL = 15 @ -0.02 dBm	58.00	mA
PCS1900 PCL = 0 @ 29.63 dBm	159.00	mA
PCS1900 PCL = 7 @ 16.74 dBm	78.00	mA
PCS1900 PCL = 15 @0.96 dBm	59.00	mA

Table 47: EG915N-EA Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	23.65	μΑ
	AT+CFUN=0 (USB disconnected)	0.92	mA
	EGSM900 @ DRX = 2 (USB disconnected)	1.92	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.46	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.66	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.35	mA
	DCS1800 @ DRX = 2 (USB disconnected)	1.96	mA
Sleep state	DCS1800 @ DRX = 5 (USB disconnected)	1.50	mA
	DCS1800 @ DRX = 5 (USB suspend)	1.64	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.35	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.88	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.44	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.60	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.22	mA

	LTE-FDD @ PF = 256 (USB disconnected)	1.10	mA
	EGSM900 @ DRX = 5 (USB disconnected)	16.69	mA
	EGSM900 @ DRX = 5 (USB connected)	29.61	mA
Idle state	DCS1800 @ DRX = 5 (USB disconnected)	16.73	mA
	DCS1800 @ DRX = 5 (USB connected)	29.59	mA
	LTE-FDD @ PF = 64 (USB disconnected)	16.52	mA
	LTE-FDD @ PF = 64 (USB connected)	29.39	mA
	EGSM900 4DL/1UL @ 32.99 dBm	232.00	mA
GPRS data transmission	EGSM900 3DL/2UL @ 32.45 dBm	411.00	mA
	EGSM900 2DL/3UL @ 30.79 dBm	513.00	mA
	EGSM900 1DL/4UL @ 28.64 dBm	557.00	mA
	DCS1800 4DL/1UL @ 28.75 dBm	170.00	mA
	DCS1800 3DL/2UL @ 29.29 dBm	290.00	mA
	DCS1800 2DL/3UL @ 27.66 dBm	349.00	mA
	DCS1800 1DL/4UL @ 24.73 dBm	376.00	mA
	EGSM900 4DL/1UL @ 25.88 dBm	127	mA
	EGSM900 3DL/2UL @ 25.62 dBm	216	mA
	EGSM900 2DL/3UL @ 24.25 dBm	276	mA
EDGE data	EGSM900 1DL/4UL @ 22.92 dBm	319	mA
transmission	DCS1800 4DL/1UL @ 25.27 dBm	121	mA
	DCS1800 3DL/2UL @ 25.11 dBm	207	mA
	DCS1800 2DL/3UL @ 23.50 dBm	266	mA
	DCS1800 1DL/4UL @ 22.33 dBm	319	mA
LTE data	LTE-FDD B1	682.00	mA
transmission	LTE-FDD B3	743.00	mA

	LTE-FDD B7	737.00	mA
	LTE-FDD B8	611.00	mA
	LTE-FDD B20	555.00	mA
	LTE-FDD B28	534.00	mA
	EGSM900 PCL = 5 @ 32.53 dBm	244.00	mA
	EGSM900 PCL = 12 @ 19.40 dBm	101.00	mA
GSM voice call	EGSM900 PCL = 19 @ 4.05 dBm	68.00	mA
GSIVI VOICE CAII	DCS1800 PCL = 0 @ 29.16 dBm	180.00	mA
	DCS1800 PCL = 7 @ 16.27 dBm	88.00	mA
	DCS1800 PCL = 15 @ -0.72 dBm	66.00	mA

For more information about power consumption, contact Quectel Technical Support for the power consumption test report of the module.

5.4. Digital I/O Characteristics

Table 48: 1.8 V Digital I/O Requirements

Parameter	Description	Min.	Max.	Unit
V_{IH}	Input high voltage	0.7 × VDDIO	VDDIO + 0.2	V
V _{IL}	Input low voltage	-0.3	0.3 × VDDIO	V
VoH	Output high voltage	VDDIO - 0.2	-	V
V _{OL}	Output low voltage	-	0.2	V

Table 49: (U)SIM 1.8 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	1.62	1.98	V
VIH	Input high voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{IL}	Input low voltage	0	0.2 × USIM_VDD	V
V _{OH}	Output high voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{OL}	Output low voltage	0	0.15 × USIM_VDD	V

Table 50: (U)SIM 3.0 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	2.7	3.3	V
VIH	Input high voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{IL}	Input low voltage	0	0.15 × USIM_VDD	V
V _{OH}	Output high voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{OL}	Output low voltage	0	0.15 × USIM_VDD	V

5.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

The following table shows the module electrostatics discharge characteristics.

Table 51: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
All Antenna Interfaces	±4	±8	kV
Other Interfaces	±0.5	±1	kV

5.6. Operating and Storage Temperatures

Table 52: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ⁴	-35	+25	+75	°C
Extended Operation Range ⁵	-40	-	+85	°C
Storage Temperature Range	-40	-	+90	°C

EG915N_Series_Hardware_Design

⁴ Within operating temperature range, the module is 3GPP compliant.

⁵ Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission and emergency call, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

6 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

6.1. Mechanical Dimensions

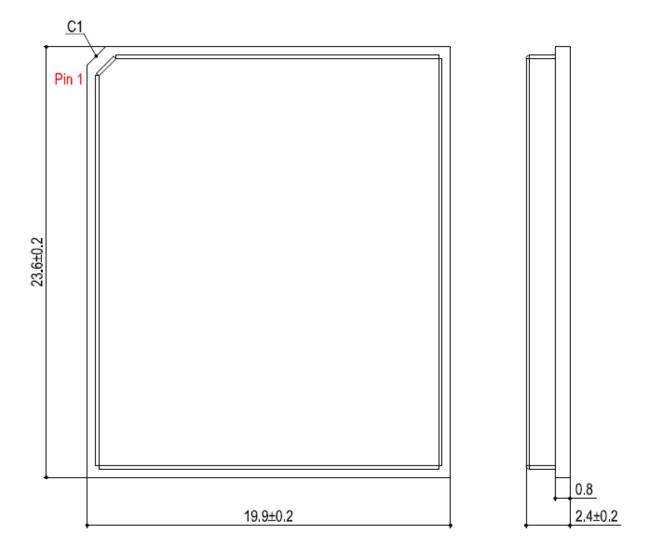


Figure 42: Top and Side Dimensions

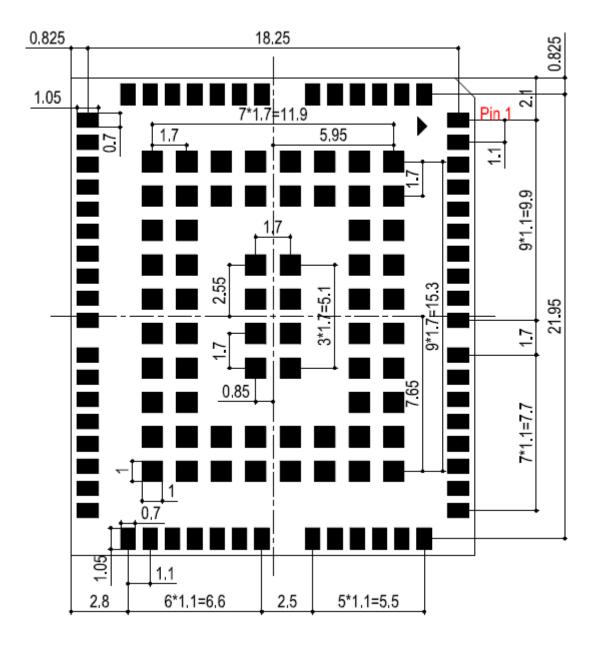


Figure 43: Bottom Dimensions (Bottom View)

The package warpage level of the module conforms to *JEITA ED-7306* standard.

6.2. Recommended Footprint

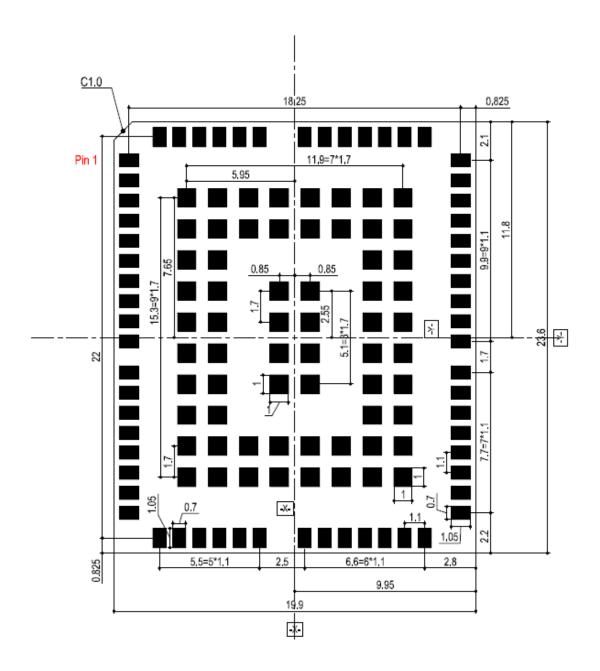


Figure 44: Recommended Footprint (Top View)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

6.3. Top and Bottom Views

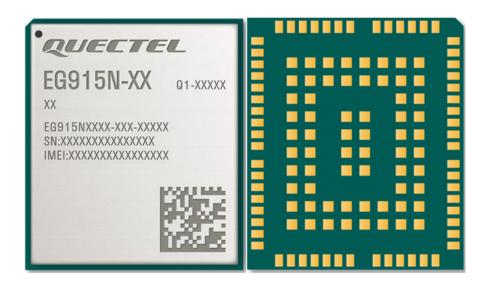


Figure 45: Top View and Bottom View of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

7 Storage, Manufacturing and Packaging

7.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. The storage life (in vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ⁶ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g. a drying cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement above occurs;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a drying cabinet.

⁶ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not remove the packages of tremendous modules if they are not ready for soldering.

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

7.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [6].**

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

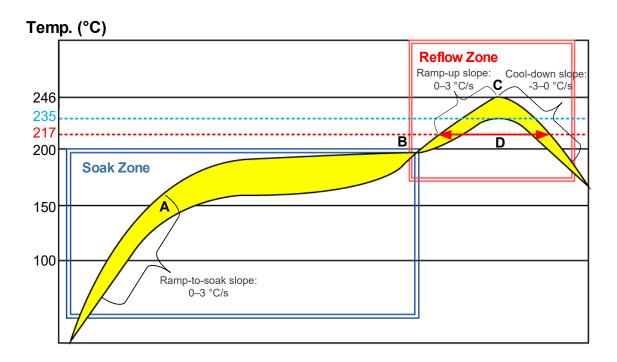


Figure 46: Recommended Reflow Soldering Thermal Profile

Table 53: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217°C)	40–70 s
Max temperature	235–246 °C
Cool-down slope	-3-0 °C/s
Reflow Cycle	
Max reflow cycle	1

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirement.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document [6]*.

7.3. Packaging Specification

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts carrier tape packaging and details are as follow:

7.3.1. Carrier Tape

Dimension details are as follow:

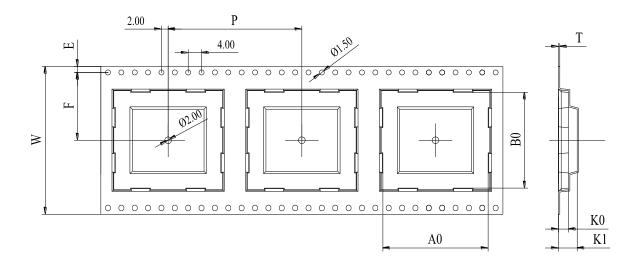


Figure 47: Carrier Tape Dimension Drawing

Table 54: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	A0	В0	K0	K1	F	Е
44	32	0.35	20.2	24	3.15	6.65	20.2	1.75

7.3.2. Plastic Reel

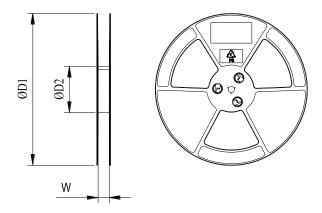
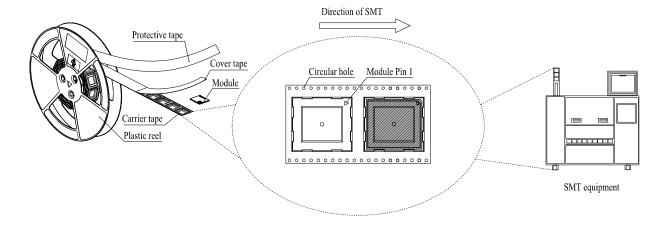



Figure 48: Plastic Reel Dimension Drawing

Table 55: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5

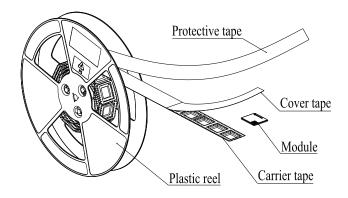
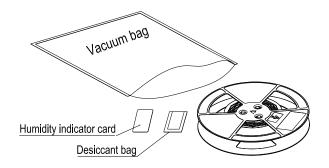
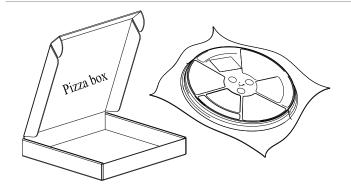

7.3.3. Mounting Direction

Figure 49: Mounting Direction




7.3.4. Packaging Process

Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. 1 plastic reel can load 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, vacuumize it.

Place the vacuum-packed plastic reel into the pizza box.

Put 4 packaged pizza boxes into 1 carton box and seal it. 1 carton box can pack 1000 modules.

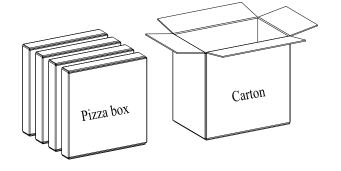


Figure 50: Packaging Process

8 Appendix References

Table 56: Related Documents

Document Name
[1] Quectel_UMTS<E_EVB_User_Guide
[2] Quectel_EC200x&EG800K&EG810M&EG91xN&EG912Y&EG950A_Series_AT_Commands_ Manual
[3] Quectel_EC200x&EG91xN&EG912Y&EG950A_Series_Audio_Application_Note
[4] Quectel_EG915N&EG950A_Series_GNSS_Application_Note
[5] Quectel_RF_Layout_Application_Note
[6] Quectel_Module_SMT_Application_Note

Table 57: Terms and Abbreviations

Abbreviation	Description
3GPP	3rd Generation Partnership Project
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate
ВВ	Baseband
BDS	BeiDou Navigation Satellite System
bps	Bits Per Second
CEP	Circular Error Probable
CHAP	Challenge Handshake Authentication Protocol
CMUX	Connection MUX

CS	Coding Scheme
CTS	Clear To Send
DCE	Data Communications Equipment
DCS	Data Coding Scheme
DFOTA	Delta Firmware Upgrade Over-The-Air
DL	Downlink
DRX	Discontinuous Reception
DTE	Data Terminal Equipment
DTR	Data Terminal Ready
EDGE	Enhanced Data Rates for GSM Evolution
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
ETSI	European Telecommunications Standards Institute
EVB	Evaluation Board
FDD	Frequency Division Duplex
FILE	File Protocol
FR	Full Rate
FTP	File Transfer Protocol
FTPS	FTP over SSL
Galileo	Galileo Satellite Navigation System (EU)
GLONASS	Global Navigation Satellite System (Russia)
GMSK	Gaussian Minimum Shift Keying

GNSS	Global Navigation Satellite System
GPIO	General-Purpose Input/Output
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HR	Half Rate
HTTP	Hyper Text Transfer Protocol
HTTPS	Hyper Text Transfer Protocol over Secure Socket Layer
IMT-2000	International Mobile Telecommunications 2000
IOmax	Maximum Output Load Current
I2C	Inter-Integrated Circuit
LDO	Low Dropout Regulator
LED	Light Emitting Diode
LGA	Land Grid Array
LNA	Low-Noise Amplifier
LSB	Least Significant Bit
LTE	Long Term Evolution
M2M	Machine to Machine
Mbps	Megabits per second
MCS	Modulation and Coding Scheme
ME	Mobile Equipment
MIC	Microphone
MLCC	Multi-layer Ceramic Capacitor
MMS	Multimedia Messaging Service
MO	Mobile Origination

MQTT	Message Queuing Telemetry Transport
MSB	Most Significant Bit
MSL	Moisture Sensitivity Level
MT	Mobile Terminating
NITZ	Network Identity and Time Zone
NMEA	(National Marine Electronics Association)0183 Interface Standard
NTP	Network Time Protocol
PA	Power Amplifier
PAM	Power Amplifier Module
PAP	Password Authentication Protocol
PC	Personal Computer
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDA	Personal Digital Assistant
PDU	Protocol Data Unit
PF	Paging Frame
PING	Packet Internet Groper
PMIC	Power Management IC
POS	Point of Sale
PPP	Point-to-Point Protocol
PPS	Pulse Per Second
PSK	Phase Shift Keying
QZSS	Quasi-Zenith Satellite System
RAM	Random Access Memory
RHCP	Right Hand Circular Polarization

RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request to Send
SAW	Surface Acoustic Wave
SIM	Subscriber Identity Module
SIMO	Single Input Multiple Output
SMD	Surface Mount Device
SMS	Short Message Service
SMT	Surface Mount Technology
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
THD	Total Harmonic Distortion
TDD	Time Division Duplexing
TTFF	Time to First Fix
TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver &Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USB	Universal Serial Bus
(U)SIM	(Universal) Subscriber Identity Module
VBAT	Voltage at Battery (Pin)

V _{IH}	High-level Input Voltage
V _{IL}	Low-level Input Voltage
Vmax	Maximum Voltage
Vmin	Minimum Voltage
Vnom	Nominal Voltage
Vон	High-level Output Voltage
V _{OL}	Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio